Water and sanitation

Water and sanitation are pivotal elements of the Sustainable Development Goals (SDGs), primarily encapsulated in SDG 6 (Clean Water and Sanitation). This goal seeks to ensure the availability and sustainable management of water and sanitation for all by 2030. This objective directly addresses the current global water crisis, where nearly 2.2 billion people live without access to safe water, and about 4.2 billion lack access to adequate sanitation.

By focusing on improving water quality, increasing water-use efficiency, implementing integrated water resources management at all levels, and protecting and restoring water-related ecosystems, SDG 6 addresses not only direct human needs but also the broader ecological health of the planet. Furthermore, efforts towards achieving SDG 6 indirectly promote several other SDGs.

For instance, water and sanitation are crucial to achieving SDG 3 (Good Health and Well-being), as clean water and proper sanitation facilities reduce the spread of water-borne diseases and significantly lower child and maternal mortality rates. Likewise, they are foundational to SDG 4 (Quality Education), given that the provision of water and sanitation facilities in schools significantly impacts the attendance and performance of students, particularly for girls.

SDG 2 (Zero Hunger) also intersects with water and sanitation, as sustainable and efficient water management is critical for agriculture, which remains the largest global water consumer. The necessity of water for food production and the potential impact of improved water management on crop yields and livestock health makes SDG 6 integral to achieving zero hunger.

SDG 6 contributes to SDG 1 (No Poverty) and SDG 8 (Decent Work and Economic Growth) as well. Access to clean water and sanitation can enhance economic productivity by reducing time spent gathering water, reducing healthcare costs due to water-related diseases, and even creating jobs in water and sanitation services sectors.

In terms of environmental impact, the sustainable management of water resources is essential for SDG 13 (Climate Action), as water is a key factor in managing climate change due to its role in agriculture and energy production.

An international review of stormwater regulation and practices, especially for low-exposure, landscape irrigation schemes in urban environments, was undertaken with a view to identifying what could be used in Alberta, Canada. A general lack of clear guidance and regulation to manage stormwater quality and potential public health risks was identified, which could be hindering the uptake of stormwater schemes generally.
Urban source separation infrastructure systems have a promising potential for a more sustainable management of household food waste and wastewaters. A renewed trend of larger implementations of pilot areas with such systems is currently emerging in Northern Europe. This study investigates the drivers behind the decision of stakeholders to implement source separation systems as well as the importance of the previously existing pilot areas in the decision-making process. By means of semi-structured expert interviews, five areas with source separation were characterized and compared.
Elsevier,

Sustainable Cities and Society, Volume 28, 1 January 2017

This paper discusses the CO2 footprint of California's drought during 2012–2014. We show that California drought significantly increased CO2 emissions of the energy sector by around 22 million metric tons, indicating 33% increase in the annual CO2 emissions compared to pre-drought conditions. We argue that CO2 emission of climate extremes deserve more attention, because their cumulative impacts on CO2 emissions are staggering. Most countries, including the United States, do not have a comprehensive a nationwide energy-water plan to minimize their CO2 emissions.

Disasters impacts on urban environment are the result of interactions among natural and human systems, which are intimately linked each other. What is more, cities are directly dependent on infrastructures providing essential services (Lifeline Systems, LS). The operation of LS in ordinary conditions as well as after disasters is crucial. Among the LS, drinking water supply deserves a critical role for citizens. The present work summarizes some preliminary activities related to an ongoing EU funded research project.

The sustainability of water resources depends on the dynamic interactions among the environmental, technological, and social characteristics of the water system and local population. These interactions can cause supply-demand imbalances at diverse temporal scales, and the response of consumers to water use regulations impacts future water availability. This research develops a dynamic modeling approach to simulate supply-demand dynamics using an agent-based modeling framework that couple models of consumers and utility managers with water system models.

Elsevier,

Climate Risk Management, Volume 16, 2017

The primary objective of this study is to determine what drives states to plan for the impacts of a changing climate. As the climate continues to change, climate scientists have projected changes in water quantities available for human and other uses. This quantitative study examines how state water plans and state hazard mitigation plans address climate change. Plans were coded for the extent to which they address climate change in their calculations regarding future water supply and demand.

Elsevier,

Solar Energy Desalination Technology, Chapter 1, 2017, Pages 1–46

To advance goal 6 (clean water and sanitation), this chapter explores different desalination processes to make seawater drinkable, which is an obvious solution to any water shortages. Given the high-polluting energy required in the desalination process, solar-desalination technologies is considered.
Elsevier,

Competition for Water Resources: Experiences and Management Approaches in the US and Europe, 2017, Pages 19-35

This book chapter addresses goals 6 and 12 by providing an overview of water resources in Europe and the associated anthropogenic and natural pressures. It further introduces the main instrument of the European Union (the Water Framework Directive) initiated as a response to the expected water crisis.
The Blueprint for Business Leadership on the SDGs aims to inspire all business — regardless of size, sector or geography — to take leading action in support of the achievement of the Sustainable Development Goals (SDGs). It illustrates how the five leadership qualities of Ambition, Collaboration, Accountability, Consistency, and Intentional can be applied to a business' strategy, business model, products, supply chain, partnerships, and operations to raise the bar and create impact at scale. The Blueprint is a tool for any business that is ready to advance its principled approach to SDG action to become a leader. This chapter relates specifically to SDG 6.
Elsevier, Chem, Volume 1, 1 December 2016
Professor Paul T. Anastas holds the Teresa and H. John Heinz II Chair in Chemistry for the Environment at Yale University and serves as director of the Center for Green Chemistry and Green Engineering at Yale. He has published widely on the subject of green chemistry and has served in the administration of three US presidents. Professor Julie Zimmerman is an internationally recognized engineer whose work is focused on advancing innovations in sustainable technologies.

Pages