Technology

Technology plays a central role in achieving the Sustainable Development Goals (SDGs), particularly SDG 9 (Industry, Innovation, and Infrastructure), SDG 4 (Quality Education), SDG 3 (Good Health and Well-being), and SDG 13 (Climate Action). The transformative power of technology can accelerate progress towards all the SDGs by driving economic growth, reducing inequalities, enhancing access to basic services, and promoting sustainability.

Under SDG 9, technology, particularly in terms of Information and Communication Technology (ICT), is a key enabler of industrial innovation and infrastructure development. ICT has the potential to drive economic growth by enhancing productivity, creating jobs, and fostering entrepreneurship. Moreover, it can contribute to making industries more sustainable by facilitating the transition towards smart manufacturing and circular economy models.

Regarding SDG 4, technology can greatly enhance access to quality education. Digital technologies, including e-learning platforms, can break down barriers to education, such as geographical distance, socio-economic status, and physical disabilities. They can also enrich the learning process by enabling personalized, student-centered learning experiences.

In the context of SDG 3, technology has a profound impact on health outcomes. Medical technologies, from simple devices like thermometers to complex systems like MRI machines, have revolutionized healthcare delivery. Furthermore, digital health technologies, such as telemedicine and mobile health apps, can enhance access to health services, improve patient outcomes, and reduce healthcare costs.

For SDG 13, technology offers powerful tools for mitigating and adapting to climate change. Renewable energy technologies can help to reduce greenhouse gas emissions, while climate information services can enhance resilience to climate impacts. Furthermore, digital technologies can facilitate the monitoring and reporting of climate actions, contributing to greater transparency and accountability.

However, the benefits of technology are not automatic, and there are significant challenges to overcome, including the digital divide, cybersecurity threats, and ethical issues related to privacy and data ownership. Thus, policy interventions and multi-stakeholder partnerships are needed to ensure that technology serves as a catalyst for sustainable development and does not exacerbate inequalities.

Automated vehicles represent a technology that promises to increase mobility for many groups, including the senior population (those over age 65) but also for non-drivers and people with medical conditions. This paper estimates bounds on the potential increases in travel in a fully automated vehicle environment due to an increase in mobility from the non-driving and senior populations and people with travel-restrictive medical conditions.
Network organization Amsterdam Data Science (ADS) and Elsevier are collaborating together on several fronts, including research and development, joint promotion of Amsterdam as a data science center, and data science talent development. This partnership marks the first long-term collaboration agreement signed by ADS and is interetsed in advancing SDG 9 targets 5, B and C. A number of projects have already started. These are focused on improving data search and reproducibility of research that will ultimately result in higher quality research outcomes.
Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions.
Global health threats such as the recent Ebola and Zika virus outbreaks require rapid and robust responses to prevent, reduce and recover from disease dispersion. As part of broader big data and digital humanitarianism discourses, there is an emerging interest in data produced through mobile phone communications for enhancing the data environment in such circumstances.
California-based Facebook is planning to build two data centres measuring 184,000 square metres in Denmark’s third largest city. This could push up total Danish power demand by a 10%, and accelerate investments in wind production. Increasing the production of wind power and other renewables contributes to the advancement of SDG target 7.2 to increase the share of renewable energy in the global energy mix.
Loowatt team in Madagascar
The RELX Group Environmental Challenge is awarded annually to projects that best demonstrate how they can provide sustainable access to safe water where it is presently at risk and/or access to improved sanitation. The 2016 winner was Loowatt - an innovative sanitation solution which also generates power. The Environmental Challenge directly assists SDG 6.1 and 6.2 to achieve universal and equitable access to safe and affordable drinking water and access to adequate and equitable sanitation and hygiene, for all.
The rapidly growing and gigantic body of stored data in the building field, coupled with the need for data analysis, has generated an urgent need for powerful tools that can extract hidden but useful knowledge of building performance improvement from large data sets. As an emerging subfield of computer science, data mining technologies suit this need well and have been proposed for relevant knowledge discovery in the past several years. Aimed to highlight recent advances, this paper provides an overview of the studies undertaking the two main data mining tasks (i.e.
ICIS,

Special Report, 3 July 2016

Covestro has produced bio-based PU dispersions for textile applications
Growing demands from brand owners and consumers for fibres and textiles that are more environmentally friendly are now creating a huge market for bio-based polymers produced using renewable feedstocks. The textile and packaging industries have a significant impact on the environment: this report highlights how recent developments in new materials support SDG 9 Industry, Innovation and Infrastructure, and SDG 7 Affordable and Clean Energy.
As part of the transition to a future power grid, distribution systems are undergoing profound changes evolving into Active Distribution Networks (ADNs). The presence of dispersed generation, local storage systems and responsive loads in these systems incurs severe impacts on planning and operational procedures. This paper focuses on the compelling problem of optimal operation and control of ADNs, with particular reference to voltage regulation and lines congestion management.
Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications.

Pages